
Garbage in, Garbage Out 머신러닝을 경험한 사람이라면 지겹도록 들은 말일 것이다(대부분은 Garbage가 안들어가도 Garbage Out되지만). 데이터를 선별하고 검증하지 않으면 모델이 제대로 학습하지 못한다. 데이터 검증은 파이프라인의 데이터가 피처 엔지니어링 단계에서 기대하는 데이터인지 확인하는 작업이다. 아래와 같은 작업들이 데이터 검증이라고 할 수 있다. 여러 데이터셋을 비교 시간이 지나 업데이트되면서 데이터가 변경될 때도 표시 이상치를 확인하거나 스키마(schema)의 변경 확인 새 데이터셋과 이전 데이터셋의 통계가 일치하는지도 확인 TFDV(Tensorflow Data Validation)를 통한 데이터 검증 TFX가 제공하는 패키지인 TFDV을 통하여 데이터를 검증해보자...

TFX로 파일이나 서비스에서 데이터를 수집하는 컴포넌트를 실행할 수 있다. 데이터를 split하고, 여러 데이터를 결합하고, 다양한 형태의 데이터를 수집하는 전략들을 알아보자. 데이터를 컴포넌트로 전달하기 전에 다음의 절차를 따른다. 데이터를 데이터셋(train, valid)로 split TFRecord 파일로 변환 TFRecord는 데이터셋 스트리밍에 최적화된 형식이다. TFRecord는 대량의 데이터를 빠르게 다운로드하거나 write할 때 쓰는데 최적화 되어있고, 모든 TFX 컴포넌트에서 사용한다. TFRecord로 변환, 혹은 기존의 TFRecord 가져오기 tfx.components의 CsvExampleGen 패키지를 통해서 기존의 .csv 파일을 tf.Example로 변환할 수 있다. impor..
- Total
- Today
- Yesterday
- PO
- Kubernetes
- 인공지능
- productresearch
- 머신러닝
- docker
- 스타트업
- 쿠버네티스
- Oreilly
- PM
- pmpo
- 딥러닝
- Bert
- 파이프라인
- torch
- 전처리
- dl
- nlp
- mlpipeline
- ML
- deeplearning
- 머신러닝파이프라인
- DDUX
- container
- MLOps
- 자연어처리
- productowner
- 도커
- productmanager
- Tennis
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |